摘要:存储引擎是数据库管理系统用来从数据库创建、读取和更新数据的软件模块。MySQL中有两种类型的存储引擎:事务性和非事务性。
对于MySQL 5.5及更高版本,默认的存储引擎是InnoDB。在5.5版本之前,MySQL的默认存储引擎是MyISAM。
什么是索引
索引是一种数据结构,可以快速的进行数据的查找.
索引的数据结构和具体存储引擎的实现有关, 在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引.
查看索引
1 | SHOW INDEX FROM <tablename>; |
可以使用多少列创建索引?
任何标准表最多可以创建16个索引列。
什么时候不需要回表查询数据
B+树在满足聚簇索引和覆盖索引的时候。
聚簇索引
以 InnoDB 作为存储引擎的表,表中的数据都会有一个主键,即使不创建主键,系统也会帮你创建一个隐式的主键。
B+ 树的键值就是主键,在 B+ 树的叶子节点中,存储了表中所有的数据。这种以主键作为 B+ 树索引的键值而构建的 B+ 树索引,称之为聚集索引。
当查询使用聚簇索引时,在对应的叶子节点,可以获取到整行数据,因此不用再次进行回表查询.
非聚簇索引一定会回表查询吗-覆盖索引
不一定,这涉及到查询语句所要求的字段是否全部命中了索引,如果全部命中了索引,那么就不必再进行回表查询.
例如,假设我们在员工表的年龄上建立了索引,那么当进行select age from employee where age < 20的查询时,在索引的叶子节点上,已经包含了age信息,不会再次进行回表查询.
在建立索引的时候,都有哪些需要考虑的因素呢?
建立索引的时候一般要考虑到字段的使用频率,经常作为条件进行查询的字段比较适合.如果需要建立联合索引的话,还需要考虑联合索引中的顺序.此外也要考虑其他方面,比如防止过多的所有对表造成太大的压力.这些都和实际的表结构以及查询方式有关.
联合索引是什么?为什么需要注意联合索引中的顺序?
MySQL可以使用多个字段同时建立一个索引,叫做联合索引.在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引.
具体原因为:
MySQL使用索引时需要索引有序,假设现在建立了”name,age,school”的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序.
当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,,,以此类推.因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面.此外可以根据特例的查询或者表结构进行单独的调整.
语句是否使用了索引,分析语句?
MySQL提供了explain命令来查看语句的执行计划,MySQL在执行某个语句之前,会将该语句过一遍查询优化器,之后会拿到对语句的分析,也就是执行计划,其中包含了许多信息. 可以通过其中和索引有关的信息来分析是否命中了索引,例如possilbe_key,key,key_len等字段,分别说明了此语句可能会使用的索引,实际使用的索引以及使用的索引长度.
索引失效
列设置了索引但是查询不生效
- 使用不等于查询,
- 列参与了数学运算或者函数
- 在字符串like时左边是通配符.类似于’%aaa’.
- 当mysql分析全表扫描比使用索引快的时候不使用索引.
- 当使用联合索引,前面一个条件为范围查询,后面的即使符合最左前缀原则,也无法使用索引.
Hash索引和B+树所有有什么区别或者说优劣呢?
hash索引底层就是hash表,进行查找时,调用一次hash函数就可以获取到相应的键值,之后进行回表查询获得实际数据.
B+树底层实现是多路平衡查找树.对于每一次的查询都是从根节点出发,查找到叶子节点方可以获得所查键值,然后根据查询判断是否需要回表查询数据.
不同:
hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询.
因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询.而B+树的的所有节点皆遵循(左节点小于父节点,右节点大于父节点,多叉树也类似),天然支持范围.
hash索引不支持使用索引进行排序,原理同上.
hash索引不支持模糊查询以及多列索引的最左前缀匹配.原理也是因为hash函数的不可预测.AAAA和AAAAB的索引没有相关性.
hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询.
hash索引虽然在等值查询上较快,但是不稳定.性能不可预测,当某个键值存在大量重复的时候,发生hash碰撞,此时效率可能极差.而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低.
因此,在大多数情况下,直接选择B+树索引可以获得稳定且较好的查询速度.而不需要使用hash索引.